Smooth Densities for Stochastic Differential Equations with Jumps

نویسنده

  • THOMAS CASS
چکیده

We consider a solution xt to a generic Markovian jump diffusion and show that for any t0 > 0 the law of xt0 has a C ∞ density with respect to Lebesgue measure under a uniform version of Hörmander’s conditions. Unlike previous results in the area the result covers a class of infinite activity jump processes. The result is accompolished by using carefully crafted refinements to the classical arguments used in proving the smoothness of density via Malliavin calculus. In particular, we provide a proof that the semimartinagale inequality of Norris persists for discontinuous semimartingales when the jumps are small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations

As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...

متن کامل

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

We prove an existence and uniqueness result for a general class of backward stochastic partial differential equations with jumps. This is a type of equations which appear as adjoint equations in the maximum principle approach to optimal control of systems described by stochastic partial differential equations driven by Lévy processes.

متن کامل

Forward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations

In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jum...

متن کامل

Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

Abstract: The current paper is concerned with the controllability of nonlocal secondorder impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007